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The estimation of carcinogenic risks from exposure to chemicals has become an integral part of
the regulatory process in the United States within the past decade. With it have come
considerable controversy and debate over the scientific merits and shortcomings of the methods
and their impact on risk management decisions. In this paper we highlight selected topics of
current interest in the debate. As an indication of the level of public concern, we note the major
recent reports on risk assessment from the National Academy of Sciences and the U.S.
Environmental Protection Agency's proposed substantial revisions to its Guidelines for
Carcinogen Risk Assessment. We identify and briefly frame several key scientific issues in cancer
risk assessment, including the growing recognition of the importance of understanding the mode
of action of carcinogenesis in experimental animals and in humans, the methodologies and
challenges in quantitative extrapolation of cancer risks, and the question of how to assess and
account for human variability in susceptibility to carcinogens. In addition, we discuss initiatives in
progress that may fundamentally alter the carcinogenesis testing paradigm. Environ Health
Perspect 105(Suppl 1):1 17-1 26 (1997)
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Introduction
Although risk assessment in various forms
has been used since antiquity, its use to
assess and regulate the carcinogenic hazards
of environmental chemicals in the United
States dates to the early 1970s (1-5). In
1983, the National Research Council
(NRC) released its influential report Risk
Assessment in the Federal Government:
Managing the Process (6), which described
a paradigm for cancer risk assessment that
has become the template for its develop-
ment and application in the United States.
The U.S. Environmental Protection Agency
(U.S. EPA) issued its first formal guidelines
for the conduct of cancer risk assessment in
1986 (7), and since that time, risk assess-
ment has been one of the most prominent
scientific issues in legislative, policy, and
regulatory discussions.
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Discussions of risk assessment, particu-
larly for carcinogens, have been especially
intense during the 1990s. Among the
significant products of these discussions
are the report of the National Research
Council's Committee on Risk Assessment
Methodology: Issues in Risk Assessment (8),
the report of the National Research
Council's Committee on Risk Assessment
of Hazardous Air Pollutants: Science and
Judgment in Risk Assessment (9), and the
Report ofthe President's Commission on Risk
Assessment and Risk Management (10).

Risk reform legislation was introduced
in both Houses of Congress during 1995 in
an attempt to legislate the use of risk
assessment and the structure of the risk
assessment process. While risk assessment
legislation has not been passed by Congress,
relatively minor components have been
incorporated in the 1996 reauthorization of
the Safe Drinking Water Act and will likely
be incorporated in other environmental
statutes. Although risk assessment legislation
has been rationalized, in part, by perceived
shortcomings in the process, the NRC (9)
generally endorsed the U.S. EPA's approach
to quantitative risk assessment, including
the agency's reliance on default assump-
tions. However, the U.S. EPA's 1986 guide-
lines, while in actuality allowing some
flexibility in the conduct of risk assessment

for carcinogens, have often been viewed as
overly rigid in practice. The guidelines have
also been viewed by many as well behind
the times and unable to incorporate recent
advances in toxicology, epidemiology, and
related disciplines. The U.S. EPA's draft
revisions to the 1986 guidelines (11),
released for public comment in April 1996,
have proposed several changes that should,
if adopted, allow a more flexible process
based on the best available science.

In the following paragraphs we high-
light some of the scientific issues that are
the focus of the current discussion.

Mode of Action and
Dose-Response
Relationships: Qualitative
and Quantitative Assessment
of Cancer Risks
Perhaps the most significant recent advances
in cancer risk assessment have occurred
through improvements in the understand-
ing of the mechanisms and/or modes of
action by which chemicals induce cancer.
Data on mechanisms, toxicokinetics, and
toxicodynamics have begun to be incor-
porated into the hazard evaluation and
dose-response assessment components of
cancer risk assessments. The U.S. EPA's
proposed guidelines (11) provide a frame-
work for the use of such scientific informa-
tion, when available, in place of the default
assumptions that have characterized most
cancer risk assessments in the past.

Specifically, the guidelines call for the
use of mode of action data whenever possi-
ble. In the current jargon of cancer risk
assessment, identifying the mechanism of
action of a chemical implies a comprehen-
sive understanding of every event in the
process by which the chemical produces
tumors in a particular organism. Knowledge
of the mode of action suggests that one
understands in general the critical events in
that process, but not necessarily the details.
There is no carcinogen for which the
mechanism of action is fully known; thus,
the new U.S. EPA guidelines do not pro-
pose such an unrealistic standard. The
guidelines state: "While the exact mecha-
nism of action of an agent at the molecular
level may not be clear from existing data,
the available data will often provide support
for deducing the general mode of action.
Under these guidelines, using all of the
available data to arrive at a view of the mode
of action supports both characterization of
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human hazard potential and assessment of
dose response relationships" (11).

The following section of this paper
briefly highlights two cases in which con-
sideration of the mode of action is already
impacting the qualitative assessment of
cancer risks. The proposed guidelines also
offer new approaches to the quantitative
assessment of cancer risks, including the
consideration of mode of action in select-
ing the approach to characterize dose
response. Because the extrapolation of
dose-response data far beyond the range of
experimental observations has been such a
critical issue in the cancer risk assessment
debate, it is also discussed in more detail in
the section "Quantitative Extrapolation of
Cancer Risks."

Mode ofAction in the Qualitative
Assessment ofCancer Risks: Two Cases
Cancer risk assessment is predicated upon
evidence that exposure to a chemical is
associated with tumorigenesis in humans
or animals. In cases where hazard identifi-
cation is based on studies in animals,
specifically the 2-year rodent carcinogenic-
ity bioassay, findings of chemically induced
tumors in the animals are considered evi-
dence that the chemical being tested has
the potential to cause cancer in humans.
This assumption may be supported or
challenged by a weight-of-evidence exami-
nation of collateral scientific information
that identifies and characterizes, to the
extent possible, the similarities and differ-
ences between carcinogenic processes in
humans and animals.

Such weight-of-evidence approaches
may have considerable implications for reg-
ulatory policy (12). For example, kidney
tumors in male rats, associated with the
accumulation of hyaline droplets contain-
ing the urinary protein a2-microglobulin
(a22p), have been interpreted to result from
regenerative hyperplasia in response to
droplet-associated cellular necrosis (13).
The accumulation of droplets is suggested
to be due to reversible binding of chemicals
(or their metabolites) to a2js, inhibiting its
normal proteolytic degradation (14). Since
neither a2p nor any functionally equiva-
lent protein has been found in humans,
kidney tumors in male rats attributable
solely to chemically induced a2P deposi-
tion in the renal tubules are not considered
to be relevant for humans. This interpreta-
tion is currently the basis for the U.S. EPA
policy relative to the evaluation of chemi-
cals associated with the induction of
kidney cancer in male rats (13).

This interpretation has been challenged
by Melnick and colleagues (15,16), who
suggest that test agents or their metabolites
bind to a2p and are transported to the kid-
ney tubules where the bound material is
released and causes localized cytotoxicity
leading to tumor formation. Distinguishing
whether it is the a2p-ligand complex that
is causing cytotoxicity and regenerative
hyperplasia, or whether a2P is simply
transporting and concentrating cytotoxic
chemicals in the kidney, likely can be
resolved experimentally. The contribution
of the weight-of-evidence approach is that
it has identified hyaline droplet accumu-
lation in the renal tubules as the key to
understanding this type of lesion.
A similar weight-of-evidence evaluation

has recently been applied to understanding
the relevance of findings of urinary bladder
tumors in rodents (17). Summaries by
Gold et al. (18) and Huff et al. (19) indi-
cate that approximately 4 to 10% of the
chemicals evaluated in rodent carcinogenic-
ity studies have been associated with tumors
of the urinary bladder. While certain blad-
der tumor eliciting compounds, e.g., 2-
naphthylamine and 4-aminobiphenyl,
operate through genotoxic mechanisms,
many act through nongenotoxic processes.
Examples include melamine, uracil, diethyl-
ene glycol, and sodium saccharin (20).
Bladder tumors elicited by such chemicals
typically occur at high doses and are accom-
panied by bladder stones composed of the
test compound, its metabolites, or other
treatment-related substances.

Careful examination of available scien-
tific information suggests the following
model to explain findings of urinary blad-
der tumors in rats exposed to nongenotoxic
agents. Relative to humans, the urine of
rodents is high in osmolality (21) and rich
in protein content (22). The physical and
chemical characteristics of rodent urine
constitute a unique environment that is
conducive to the formation of microcrystal-
luria, urinary precipitates, and/or bladder
calculi (21-23). This may be particularly
important during chemical carcinogenicity
testing, where animals are chronically
exposed to high doses of test agents such
that the agents and/or their metabolites
accumulate in the urine. These factors (i.e.,
crystals, precipitates, and stones) can be
physically and/or chemically cytotoxic to
bladder urothelial cells and thus can trig-
ger a regenerative hyperplasia (23). Damage
to the urothelium is aggravated because
on voiding, the rodent bladder forms
folds and ruggae that preclude complete

voidance, resulting in precipitate and
calculi retention (24). In humans, the
anatomical orientation of the bladder is
such that stones are apt to be voided or, if
retained, the associated discomfort typi-
cally results in their removal by medical
intervention. Epidemiologic studies suggest
that the presence of calculi is only weakly
associated with the occurrence of human
bladder tumors (25).

This weight-of-evidence analysis suggests
that findings in rodents of bladder tumors
associated with calculi may be of dimin-
ished concern for human health risk assess-
ment. Indeed, this model is likely to be
reflected in U.S. EPA policy relative to the
interpretation of such lesions (12). In
order to support such a mode of action and
the suggestion of diminished concern, an
investigator would need to carefully char-
acterize urine, precipitate, and stone chem-
istry; test agent metabolism, distribution,
and excretion; and establish the dose depen-
dency of the observations. Because urine
chemistry is influenced by water consump-
tion, diet, time of day, and other factors
(21,22), careful attention and documenta-
tion of laboratory and analytical proce-
dures is critical to the evaluation and
interpretation of such studies.

Quantitative xtrapolation
ofCancer Risks
The fundamental problem of extrapolation
to low doses in the quantitative estimation
of carcinogenic risk was acknowledged
already in the U.S. EPA's 1986 Guidelines
for Carcinogen Risk Assessment (7):

Since risks at low exposure levels cannot
be measured directly either by animal
experiments or by epidemiologic
studies, ... mathematical models have
been developed to extrapolate from high
to low dose. Different extrapolation
models, however, may fit the observed
data reasonably well but may lead to
large differences in the projected risk at
low doses.

These guidelines established the lin-
earized multistage model (26) as the
U.S. EPA default procedure for low-dose
extrapolation. The U.S. Food and Drug
Administration (FDA) has generally used a
linear extrapolation procedure developed
by Gaylor and Kodell (27).

The risk estimates derived by these
methods have considerable inherent vari-
ability and uncertainty, and the numbers
are considered to be conservative upper
bounds on the risk. The output of the
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linearized multistage model (LMS) that is
most commonly used in regulatory applica-
tions is the 95th percentile upper bound on
the calculated risk for a given exposure
(26,28), but the uncertainty in this esti-
mate is such that the risk characterization
usually states that the true risk may actually
be zero (7).

The controversy that has developed in
recent years over cancer risk assessment and
the resultant risk management and regula-
tory decisions in the United States derives,
in large measure, from this uncertainty and
from variability in the estimates. Our
inability to accurately estimate risks at low
doses, based on data from lifetime animal
studies conducted at much higher doses,
is a multifaceted problem that has stimu-
lated considerable discussion and research
(8,9,29,30,31), and this review can only
mention some of the issues that are shaping
the debate.

One issue that has attracted a great deal
of attention is: What is the most appropri-
ate expression of the output of a cancer
dose response or risk assessment? Some
have argued that the 95th percentile upper
bound on a risk estimate that already
incorporated a number of conservative
default assumptions was overly conserva-
tive and was leading to risk estimates that
were too high and regulatory standards
(e.g., target cleanup levels) that were too
stringent (32,33). It has been argued that
more realistic numbers that characterize
the central tendency of the risk estimate
(e.g., maximum likelihood estimate, best
estimate) should be used instead. Others
have countered that there is really little
information available to assess the conser-
vatism of the regulatory risk estimates for
humans and that estimates based on the
95th percentile upper bound may even
underestimate the risk for some populations
and chemicals (34-36).
A problem with relying solely on

estimates of central tendency is that they
tend to be unstable; i.e., in extrapolating
from experimental animal tumor data to
risks in the one-in-a-million range, the
maximum likelihood estimate can be highly
sensitive to very small changes in tumor
incidence that occur as normal variability
in animal studies. For example, Kodell and
Park (37) have shown that increasing the
number of animals with tumors from 1 of
50 to 3 of 50 in the mid-dose level of a
three-dose level (plus controls) study can
decrease the LMS maximum likelihood
estimate of the dose corresponding to a
106 risk by more than 100-fold.

Thus, a consensus has developed within
the regulatory risk assessment community
that risk estimates derived from mathemat-
ical models like the LMS model must be
expressed as more than a single number
(9). Several possible ways to express the
estimates have been suggested. These
include the presentation of some estimate
of central tendency along with the upper
and lower bounds (38), the application of
Monte Carlo analysis to generate an overall
probability distribution for the risk esti-
mates (39-43), and other probabilistic
approaches (44-46).

The U.S. EPA's proposed revised
Guidelines for Carcinogen Risk Assessment
(11) will move the agency and environ-
mental risk assessment away from reliance
on the LMS model for extrapolation of
cancer risks. Several alternatives are pro-
posed in its place. The linear default that
likely will replace the LMS model in most
cases will be a linear extrapolation from the
lower 95% confidence limit on the EDIo,
the dose associated with a 10% excess risk
over background. It is suggested in the pro-
posed guidelines that a full characterization
of the dose response should "report the
central estimate of the ED10, the upper and
lower 95% confidence limits, and a graphi-
cal representation of model fit." Exactly
how this will translate into a risk character-
ization when extrapolated remains to be
determined. [For example, Nilsson (47)
notes, in passing, that linear extrapolation
from the EDIo through the dose-response
origin will "greatly exaggerate risk" for
genotoxic carcinogens with a steep dose
response and where "strongly promotive
factors operate in the high dose range used
in animal studies...."I

In the simplest case under the proposed
guidelines (11), the ED1o will be based on
tumor incidence data from a rodent bioas-
say. However, ancillary data also may be
used to extend the dose-response curve
below the dose range in which tumors are
observed, if the ancillary data can be clearly
linked to the carcinogenic response. For
example, the dose-dependent formation of
DNA adducts of the chemical may be quan-
tifiable at levels below the range in which an
increased incidence of tumors is detectable.
Such data may be used to extend the dose-
response curve for tumors if there is a high
degree of confidence that the formation of
these adducts is a requisite step in the
development of the tumors in question and
will display the same dose response as the
tumor data at low doses (48-51). Many
other biomarkers and preneoplastic changes

have been reported that may be evaluated
on a case-by-case basis for use in extending
the dose-response curve (52-58). However,
the dose-dependent link between the bio-
marker and tumor end point must be
firmly established.

The shape of the cancer dose-response
curve at low doses has been a topic of much
theoretical discussion and debate. For
DNA-reactive carcinogens, it has been
argued that their additivity to the back-
ground rate of ongoing carcinogenic
processes predicts that the dose-response
curve will be linear at low doses (59-61).
Lutz (62) argued that "the presence of
endogenous DNA damage implies that
exogenous DNA-carcinogen adducts give
rise to an incremental damage that is
expected to be proportional to the carcino-
gen dose at the lowest levels." This, of
course, says nothing about the dose-
response relationship at higher doses where
curvature may occur due to saturation of
critical metabolic pathways or DNA repair
mechanisms, or where cytotoxicity may
occur or cell proliferation may be induced
(31,63-68). In addition, there is a body of
experimental data that suggests that expo-
sure to low levels of some carcinogens,
including ionizing radiation, may induce
and enhance the efficiency of general repair
mechanisms, and the debate over this
potentially beneficial (hormetic) effect is
drawing increasing attention (69-73).

For rodent carcinogens that are func-
tionally nongenotoxic (i.e., do not react
directly with DNA in inducing tumors),
new risk assessment paradigms are being
proposed, based on information on the
mode of action, that use a "margin of
exposure" analysis analogous to that used
commonly for noncancer endpoints. In
such cases, "the risk is not extrapolated as a
probability of an effect at low doses" (11).
Rather, estimated human exposure levels
are compared with the lower 95% confi-
dence limit on the ED1o from the animal
carcinogenicity study or other studies of
precursor effects (with doses adjusted for
the animal-to-human extrapolation). This
margin of exposure analysis does not neces-
sarily require the demonstration of a true
threshold for the carcinogenic process but
rather a sufficiently clear understanding of
the mode of action to support the pre-
sumption of an effective threshold (highly
nonlinear dose response) (17,74-77). It
has been suggested that experimental proof
of a biological threshold is somewhat akin to
proving a negative (78). Indeed, the caution
by Melnick et al. (16) against "excessive
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reliance on oversimplified classification
schemes" (such as those postulating thresh-
olds) is well taken and is one of the issues
that led the U.S. EPA to discard the alpha-
numeric classification scheme for carcino-
gens in favor a narrative description of the
weight of the evidence (11).

The new U.S. EPA guidelines call for a
fuller understanding of the carcinogenic
process and the use of all of the information
available, rather than sole reliance on
rodent tumor data. Clearly, the way for-
ward will bring with it pitfalls and prob-
lems as toxicologists attempt to evaluate
and assimilate the rapidly advancing knowl-
edge base in fundamental cancer biology,
hormonal effects (79,80), chemical interac-
tions with cellular components, and toxico-
kinetics (57) in their risk assessments. The
temptation to oversimplify the complex
may still lead to over- or underestimates of
the carcinogenic potential of individual
chemicals for humans. In the final analysis,
the actual impact of the increasing empha-
sis on delineation of mechanisms and
modes of action on regulatory risk assess-
ment for carcinogens will be an important
benchmark in assessing the value and
usefulness of the proposed guidelines.

More complex biologically based
mathematical models of the carcinogenic
process also have been developed, but early
hopes that these models might be useful
in estimating small risks at low doses
have not been realized as yet (81). Two
general types of these models are the time-
independent models exemplified by the
work of Moolgavkar and others (82-85)
and the time-dependent models exempli-
fied by the work of Ellwein and Cohen
(66,86-89). These models have been used,
for example, in examining factors influenc-
ing the occurrence of lung cancer in ura-
nium miners (90), the development of skin
papillomas in mouse initiation-promotion
studies (91), and the mechanisms of induc-
tion of liver and bladder tumors in mice in
the EDO, study (66,88,92). Other biologi-
cally based mathematical models continue
to be developed (93-98), but the predictive
capability of such models still appears to be
limited by the number of parameters requir-
ing quantitative data input and by uncer-
tainties regarding the detailed mechanisms
of carcinogenesis (81,99-103).

Human Interindividual
Variability in Susceptibility
Recent developments in the public health
arena have heightened awareness that indi-
viduals vary in their susceptibilities to

potential hazards in the environment and
that such variability reflects genetic hetero-
geneity as well as differences in exposures.
For example, the emergence of human
retrovirus-mediated disease has focused
attention on the vulnerability of immuno-
compromised individuals to potentially
hazardous agents in the environment. At
the same time, various reports (8,104)
have identified a number of biologically
based distinctions between adults and
children with respect to vulnerability to
environmental agents.

The notion that humans vary in their
susceptibilities to toxicants is supported by
observations that not all workers exposed to
benzidine develop urinary bladder cancer
(105), that humans are not all equally sus-
ceptible to air pollutants (106), and that
individual-to-individual variability in disease
susceptibility is associated with a variety of
genetic and other factors (107-109).

Concerns about human variability in
susceptibility have recently crystallized
around the question: Are safety factors or
default assumptions currently used in risk
assessment adequate to protect a human
population composed of individuals who
differ in susceptibility to potentially haz-
ardous materials (9)? Superimposed on this
question is the issue of environmental jus-
tice, which brings focus to the interactions
between genetic variability and exposure
variability. To address the question, the sci-
entific community must determine how
differential susceptibility may be quantita-
tively assessed and how well it is understood
with respect to the human population.

Animal studies provide considerable
insight into the issue of differential sus-
ceptibility. Within a single species (e.g.,
mouse), the toxicity of certain chemicals
differs substantially between strains (110).
Mechanistically, such differences in suscep-
tibility may be accounted for by genetically
determined differences in the expression or
regulation of detoxifying enzymes or other
metabolic factors. Susceptibility to potential
developmental toxicants may also depend
upon the maternal genotype as well as that
of the offspring. Unfortunately, the range of
factors and mechanisms associated with dif-
ferential susceptibility in animals is neither
fully characterized nor understood. Never-
theless, similar information, if available for
humans, would be of value in examining
differential sensitivity of individuals to
potential hazards in the environment.

The NRC (9) recommended that the
U.S. EPA should adopt an explicit default
assumption for susceptibility, and that a

default susceptibility factor greater than 1
or a default distribution of susceptibility
should be incorporated in cancer risk esti-
mates. The NRC also recommended that
research should be conducted to explore
the relationships between variability in fac-
tors such as DNA adduct formation and
variability in susceptibility to carcinogene-
sis. Additionally, the NRC recommended
that research be conducted to provide
guidance on how to design epidemiologic
studies to assess the influence of a number
of factors on interindividual variability in
susceptibility. Specific concerns include the
contribution of age and gender, and
genetic, metabolic, and physiologic para-
meters to interindividual variation in
response and susceptibility; the identifica-
tion of critical mechanisms; biomarkers
to identify sensitive subpopulations; and
the statistical and mathematical under-
standing of variability of response within
the human population. Such information
likely will have significant impact on the
methods used to assess human variability as
it applies to chemical risk assessment.
Although there is some understanding of
genetic variability, there is little under-
standing of the implications of that knowl-
edge for risk assessment. Where there are
physiological or other measures of varia-
bility in response, there is often limited
knowledge of the genetic basis for those
observations. More information is needed
to determine the adequacy of uncertainty
factors and conservative assumptions
in protecting a highly variable human
population (106,111,112).

Carcinogen Hazard
Identification: Changing
the Testing Paradigm
In the years following World War II,
concerns about the adverse health effects of
chemicals, particularly their potential to
cause cancer, led to the development of
routine testing protocols for assessing
the carcinogenic potential of chemicals.
Initially operating under the auspices of the
National Cancer Institute, the FDA, and
other government agencies, these programs
evolved into the National Toxicology
Program (NTP). Established in 1978, the
NTP has provided an organizational
umbrella for federal toxicity testing pro-
grams. In addition to its prominence as a
premier toxicity testing and research pro-
gram, the NTP has played a key role in
identifying and standardizing methods
for assessing chemically induced toxicity
and carcinogenicity.
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During the last two decades, there has
been an incredible expansion in our under-
standing of the biological principles and
processes of carcinogenesis. Driven by
technological advances in analytical instru-
mentation, molecular biology, and mono-
clonal antibody technology, the questions
posed by scientists and the tools available
to address such questions have become
increasingly more sophisticated. Not sur-
prisingly, such forces have changed pro-
foundly the scientific approaches to hazard
identification and pose a significant chal-
lenge to the risk assessment community in
terms of incorporating new knowledge and
new testing procedures into the risk assess-
ment process. Two examples will illustrate
this point.

Good animal husbandry is critical to
the success of any animal study and thus
figured prominently in the establishment
of the NTP in vivo toxicity and carcino-
genicity testing procedures. In the interest
of good husbandry, an ad libitum feeding
protocol was established for laboratory
rodents to ensure the availability of ade-
quate amounts of food on demand while
obviating the need for, and costs associated
with, individualized feed rationing and
scheduled feedings. In recent years, it has
become apparent that among rodents used
in 2-year bioassays, survival has decreased,
obesity increased, and the incidence of
background tumors and intercurrent dis-
eases have increased relative to their coun-
terparts in studies conducted during the
1960s and 1970s (113-116). Among con-
trol animals, these observations confound
the interpretation of the results of the
bioassay and call into question the reliabil-
ity, reproducibility, and predictability of
the procedure (117).

Careful examination of data from
NTP-sponsored and NTP-conforming
studies has revealed a consistent pattern of
increased rate of animal body weight gain
relative to the historical data (113,118,
119). Moreover, Keenan et al. (120,121)
report considerable intra- and interlabora-
tory variability in body weights of animals
maintained under nominal ad libitum
feeding protocols. Differences in feeding
device configuration and accessibility
accounted for a nearly 2-fold difference in
body weight between same-age animals fed
ad libitum. These and other studies sug-
gested that animals of lower body weight
exhibited greater 2-year survival, fewer
background tumors, and less intercurrent
disease than their obese counterparts
(120,121). Similar findings occur when

animals fed a portion-controlled ration of
nutritionally sufficient feed are compared
with ad libitum fed animals (122,123).
The relationship between food intake and
weight gain is further confounded by
genetic drift in rodent breeding colonies
because of selection for rapid growth and
large litter size (124,125) to satisfy the
demand for test animals.

These findings pose a considerable chal-
lenge to the NTP and to the risk assessment
community. If ad libitum feeding is respon-
sible for poor health of the animals and for
inter-assay variability, what should be done
to address the problem of overfeeding, how
would the control of dietary intake affect
animal metabolism and physiology, and
what are the implications of changing feed-
ing practices relative to the sensitivity of
the bioassay and to the cumulative data-
base as it currently exists? A considerable
body of data (126,127) suggests that feed-
ing rodents controlled portions results in
healthier animals that perform better and
more consistently in the bioassay. Many
measures suggest that controlling dietary
intake can produce metabolically and phys-
iologically robust animals without substan-
tively altering their sensitivity to chemical
toxicants and carcinogens (128-130).

The FDA, led by scientists from the
National Center for Toxicological Research,
is drafting recommendations to be pub-
lished in the Federal Register that call for
the routine use of dietary control during
chronic toxicity and carcinogenicity test-
ing. These FDA recommendations describe
a model for developing a controlled feed-
ing protocol and suggest that dose range
finding and other studies that support the
design of long-term studies should also
be conducted under the same feeding pro-
tocol as envisioned for the 2-year studies.
Although controversial in terms of changing
a fundamental component of the bioassay,
the FDA's recommendations incorporate
current scientific knowledge with the intent
of improving the bioassay. The response of
the risk assessment community to these rec-
ommendations and to the scientific chal-
lenges they pose will offer insight into how
improved scientific understanding can
be incorporated into the carcinogenicity
testing process.

The 2-year carcinogenicity bioassay also
has been criticized because the process of
identifying potential human carcinogens is
slow and costly (131); often many years
elapse between the initiation of a study and
the issuance of the final report. Scientists at
the National Institute of Environmental

Health Sciences (NIEHS) and elsewhere
have proposed using genetically modified
rodents for carcinogenicity testing
(131,132). Advances in molecular biology
and molecular genetics have provided the
technological base for inserting selected
genes into rodents during early embry-
ologic development, or conversely, selec-
tively inactivating certain genes, e.g.,
tumor suppressor genes. The resulting
transgenic and gene knockout animals,
respectively, afford unique opportunities to
assess the role of specific genes and gene
products in carcinogenic processes. The
study of animals with potentially enhanced
sensitivity to chemical carcinogens due to
overexpression of selected gene products or
inactivation of genes that suppress tumori-
genesis could lead to more rapid and cost-
effective detection of such compounds
while reducing the number of animals
needed for hazard identification.

One proposal currently in front of the
scientific community is to screen for chem-
ical carcinogens in two genetically modi-
fied strains of mice, the TG.AC transgenic
animal and the p53 knockout mouse
(131). TG.AC mice carry an activated v-
Ha-ras oncogene that is expressed primarily
in the skin (133). This gene is activated in
transformed cells from various human and
mouse tumors (134) and the expression of
the activated form of the gene in TG.AC
mice is thought to be functionally equiva-
lent to an initiated animal in the context of
the multistage model of carcinogenesis
(132). The p53 tumor suppressor gene is
inactivated in a variety of human and
mouse tumors (135,136). When one copy
of this gene is inactivated in mice, approxi-
mately 50% of the animals develop tumors
by 18 months of age (136). Because p53
hemizygous animals have a propensity for
developing tumors in a variety of tissues
and organs, they have been proposed as
models for screening for carcinogenic
effects associated with the inactivation of
tumor suppressor genes (137).

Tennant et al. (131) have examined the
responses of TG.AC transgenic and p53
knockout mice to exposure to eight and
five chemicals, respectively, and are initiat-
ing studies with additional compounds
(RW Tennant, personal communication).
These include a number of compounds
that have been evaluated in 2-year carcino-
genicity studies, others that are currently
being tested by the NTP, and still others
that have not been and are unlikely to be
tested by the NTP. Based on the small
number of known carcinogens tested to
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date, the results of these studies suggest
that p53 hemizygous mice can be used to
specifically identify mutagenic carcinogens
while TG.AC mice respond to both muta-
genic and nonmutagenic carcinogens, but
not to noncarcinogens (131).

The reliability, reproducibility, and
predictability of carcinogen screening
studies in genetically modified mice has yet
to be established. Important questions sur-
round the selection of chemicals to be eval-
uated during nominal validation studies
such as those proposed by the NIEHS
(138). The studies described by Tennant
et al. (131) exposed hemizygous p53
knockout mice to the test chemicals for 24
weeks by gavage, in feed, or by topical
administration, while TG.AC mice were
exposed for 20 weeks by topical applica-
tion. Issues of dose selection and route and
duration of exposure warrant further con-
sideration in the design of studies using
genetically altered animals. The use of
genetically induced mice will necessitate
critical analysis of the relationship between
dose and duration of exposure to facilitate
discrimination between chemical effect and
background responses. It is unclear whether
chemically induced papillomas in TG.AC
mice are predictive for nonskin, target
organ lesions. Technology does exist to reg-
ulate transgenes to achieve organ-specific
expression of the gene product (139), but
it is probably premature to factor such
approaches into carcinogen screening.

Considerable uncertainty surrounds the
interpretation of findings of chemically
induced tumors in genetically modified
animals. There is concern that the greater
sensitivity of the genetically modified mice
may lead to a high rate of false positive
results. In the context of prospective
studies, it is unclear how to distinguish a
false positive from a true positive and,
indeed, the appropriate standard against
which to base such a distinction. As has
been pointed out by many observers, the 2-
year carcinogenicity bioassay has never
been validated, and while human cancer
may constitute the gold standard, few data
are available to use in such a fashion.

Another important issue is how, if appro-
priate, to phase in the use of screening
studies in genetically altered animals. As
currently configured, the four-cell bioassay
provides for increased confidence in pre-
dicting human risk if positive results are
obtained in both species and/or animals of
each sex. Some have proposed replacing
the 2-year mouse study with short-term
studies in genetically modified mice.
Clearly more studies will be needed to sup-
port such an approach. Although many
anticipate the development and commer-
cialization of transgenic rats, most, if not
all, of these issues will apply to those
animals as well.

The International Conference on
Harmonization, an international coordi-
nating body composed of representatives
of pharmaceutical manufacturers and reg-
ulatory agencies, recently proposed that
carcinogenicity testing in genetically mod-
ified mice or other assay systems be substi-
tuted for the conventional 2-year mouse
bioassay (139). This proposal has stimu-
lated a coordinated, international multi-
laboratory study to examine a number of
the issues raised in the preceding para-
graphs. The study is being coordinated by
the ILSI Health and Environmental
Sciences Institute.

The technology and techniques for
genetic manipulation are rapidly evolving,
as is understanding of the genetic basis for
cancer susceptibility (11,140,141). This
suggests that new animal models, each
offering unique insights into the carcino-
genic process(es), will come to the atten-
tion of the toxicology and risk assessment
communities. Indeed, it is already apparent
that the cancer profile of hemizygous p53
knockout mice differs depending upon the
strain of mouse in which the p53 gene is
inactivated (142). Thus, thoughtful evalu-
ation of the existing genetically modified
animals and their role in carcinogenicity
testing should reflect the best available sci-
entific understanding while recognizing
that new, and potentially more relevant,
animal models will emerge from the
world's research laboratories.

Closing Thoughts
These are exciting times of discovery and
change, of new knowledge and high expec-
tations for cancer risk assessment. It is
becoming increasingly apparent that an
understanding of the mode of action for
rodent carcinogens will often be essential
for an adequate risk assessment. Such an
understanding will provide insight for
interpreting the rodent bioassay results and
allow a fuller characterization of the cancer
dose-response relationships for many
chemicals. Developing the optimal database
for a chemical may require a substantial
investment of time and resources, imposing
practical limitations on the process. Thus,
there will be a continuing need for a flexible
approach to risk assessment, reflecting the
availability of data. Characterization of car-
cinogenic risks will need to be transparent
with clear expression of what is known and
what is not known, and with careful articu-
lation of the variability and uncertainty in
the assessment.

The issues that we have highlighted
point to some fundamental questions that
currently confront the risk assessment
community. How do we improve our cur-
rent testing methods to enhance their value
for identifying potential human health haz-
ards? What can we do to make these tests
more rapid, more accurate, and more cost
effective in an environment of diminishing
resources, yet one that demands more cer-
tainty? How do we exploit current and
emerging scientific technology and under-
standing to bring sensitive and specific
assays into the armamentarium of the toxi-
cologist? How can we effectively integrate
the rapid expansion of knowledge of car-
cinogenic processes and modifying factors
into cancer risk assessments? What criteria
and processes will provide confidence that
new and emerging methodologies will ade-
quately protect the public from potentially
harmful chemicals? These and other issues
pose significant, but likely not insurmount-
able, challenges to the toxicology and risk
assessment communities worldwide as we
approach the new millennium.
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